金属钛是高技术领域的重要原材料,由于它质量轻密度小、机械强度高,以及耐腐蚀等优异性能,在太空、大洋、深地等极端环境具有广泛甚至不可替代的应用价值。如今,单质钛金属在高压展现出新的突出性能,在已知元素超导体中呈现Tc 26 K以上的超导转变最高温度。
中国科学院物理研究所/北京凝聚态物理国家研究中心极端条件物理重点实验室靳常青团队长期开展高压极端条件新材料制备及功能调控研究,设计研发具有自主知识产权的高压、低温、强场和激光加热的联合实验装置,可进行超高压高温合成和在位物性联合表征研究。运用以上先进的极端条件技术,他们相继揭示了系列功能材料在极端条件的新奇构效关联,包括关联、拓扑、聚合物等新兴功能材料体系 (PNAS 105, 7115(2008);JACS 132, 4876(2010);PNAS 108, 24(2011); JACS 133, 7892(2011);PNAS 110, 17263(2013); Nature Commun. 5, 3731(2014); Adv. Mater. 29, 1700715(2017); Angew. Chem. Int. Ed. 56, 1(2017); NPG Asia Mater. 11, 60(2019))。他们近期运用高压合成技术,实验发现了首个4d过渡金属富氢高温超导材料Tc 71K的锆基超导体(Sci. Bull. 67, 907 (2022)),实验发现了首个5d过渡金属富氢高温超导材料Tc 83K的铪基超导体(Mater Today Phys 27, 100826(2022));他们独立发现了210K以上的钙基富氢高温超导体(Nature Commun. 13, 2863 (2022)),成为继硫氢、稀土氢化物又1个Tc超过200K的2元高温超导材料,进一步拓展了高温超导材料的范畴。
图1 钛金属(a)248 GPa压力具有Tc~26.2 K的元素超导座高超导转变温度,(b)导电性随压力和随温度的演化,(c)在310GPa范围高压超导相图。
图3 钛金属在不同压力的电子能带结构计算:(a)Tiω @20 GPa,(b)Tiγ @ 100 GPa和(c)Tiδ @ 180 GPa。红色和灰色分别代表4s和3d轨道在能带上投影,点大小代表能带投影权重。
本工作揭示了通过电声耦合与电子关联效应的联合作用,可以在单元素等组分简单的材料实现更高的超导转变温度,这将使得超导材料的加工和应用变得相对简单。
以上研究工作发表在Nat. Commun. 13,5411(2022)上,博士研究生张昌玲和何鑫为共同第一作者,望贤成、Changfeng Chen和靳常青为共同通讯作者。研究得到基金委创新研究群体、科技部和中科院先导专项项目的资助。